
Programming Languages
Multiple Exits from a
Loop Without the GOTO
G.V. Bochmann
University o f Montrea l

Key Words and Phrases: control structures, goto free
programming, multiple exits from loops, exit statement

CR Categories: 4.20, 4.22

For several years, there has been discussion about
the use of the goto statement in programming languages
[1, 2]. It has been pointed out that goto free programs
tend to be easier to understand, allow better optimiza-
tion by the compiler, and are better suited for an even-
tual p roof of correctness. On the other hand, the goto
statement is a flexible tool for many programmers.
Most programming languages have constructs which
allow the programmer to write control flows that occur
frequently without the use of a goto. In particular, the
language Pascal [3] contains, besides the go,o, the
following control structures: if-then-else, case, while-do,
repeat-until , stepping loop. Wulf [4] has described tile
use of the construct "leave (label)" in the language Bliss,
where (label) is the name of a program section which is
exited when the statement is executed. I t is important
to note that these constructs are invented to describe
control flows that occur frequently in programs. They
describe the flow on a higher level [5] than an equivalent
construction using a goto would do.

We propose here another construct, which, outside
the body of a loop, distinguishes between normal and
abnormal termination of the loop. This kind of control
flow is realized in many programming problems, such
as exits on error conditions or search algorithms. We
consider the following example: Given a vector V of
N integers, and an integer I; if I is one of the integers
in V, print its order in V, otherwise print "not in V".
The flow diagram of Figure 1 solves the problem. I t is
equivalent to the following program section, which uses
a Boolean state variable F L A G for a test after the exit
f rom the loop. (A theoretical discussion of this method
can be found in [4 and 6]):
FLAG := false ; K := 1 ;
while (K < N) A --aFLAG do

begin FLAG := (I = V[K]) ; K := K + 1 end ;
i f FLAG then write ('order = ', K--I)

else write ('not in V')

Author's address: Department d'Informatique, University of
Montreal P.O. Box 6128, Montreal 101, Quebec, Canada.

Another solution is given by the following program
section:
for K : = 1 step 1 until N do

i f I = V[K] then begin write ('order = ', K) ;
goto CONTINUE end ;

write ('not in V') ;
CONTINUE :
These solutions do not quite reflect the simple structure
of the flow diagram of Figure 1, and the use of a new
construct which is natural to the problem would be
appropriate.
for K := 1 step 1 until N do i f I = V[K] then exitloop

exited : write ('order = ', K)
ended : write ('not in V')

A more general construct is the multiple exit loop.
I t can be defined by the following syntax:
(exit statement) :: = exitloop (label).
(loop statement) :: = (simple loop) [(multiple exit loop)
(multiple exit loop) :: = (simple loop)

(label) : (statement)

(label) : (statement)
ended : (statement)

where the labels of the multiple exit loop must cor-
respond to the labels of the exit statements that occur
within the body of the simple loop.

Fig. 1.

l l l l i l l l l l l ~ for k := 1 tO N)

i yes

i
i loop ~no ~llllllllllll~lllliillllllllllllll~

I'""11""" *'not in V" **order = ,/

The meaning of this construct is that the statement
following ended is executed after the (simple loop) is
terminated in the normal way, whereas the statement
following one of the labels is executed after an (exist
statement) with the corresponding label, executed within
the (simple loop), thus terminating the loop in an ab-
normal way.

This construct is specially suited to situations where
a loop can have several different exit points, for in-
stance whenever some error condition occurs. Compared

443 Communications July 1973
of Volume 16
the ACM Number 7

with the unrestricted use of goto statements, the mul-
tiple exit loop imposes a constraint on the control flow.
This constraint is given by the fact that the jumps
generated by the (exit statements) are jumps to the
outside of the (simple loop), which entail the execution
of a (statement) before leaving the (multiple exit loop)
construct as a whole. Because of this constraint the
use of a multiple exit loop results in the following ad-
vantages over the use of goto statements. (a) Code
optimization is easier because it is not necessary to
analyze the control flow and loop structure (due to goto
statements) of a program section, since the structure is
given by the multiple exit loop statement. (b) A rela-
tively simple method of correctness proof for a multiple
exit loop has been given in [7]. As pointed out there,
a correctness proof for programs with unrestricted use
of goto statements can get quite complicated.

A similar control structure can be used for abnormal
exits from procedures. We leave to the calling program
to specify the actions to be executed in case of an ab-
normal termination of the procedure call due to the
execution of a (procedure exit statement) : := exit
(label) within the called procedure. The multiple exit
call statement then has the form:

(procedure call statement) :: = (procedure identifier)
(parameter list) exits
(label) : (statement)

o o .

(label) : (statement)
ended : (statement)

This structure can, for example, be used to specify the
actions to be executed when the called procedure has
found some error condition which it cannot deal with
by itself.

The multiple exit loop construct is a control struc-
ture which appears frequently in programming problems
and which otherwise can only be realized using state
variables and /or goto statements. Using this construct
clarifies the program structure, and allows easy correct-
ness proofs as well as code optimization.

Acknowledgment. I am grateful to the referees for
several valuable suggestions.

Received October 1972; revised February 1973

References
1. Dijkstra, E.W. Go to statement considered harmful. Letter to
the Editor. Comm. ACM 11, 3 (Mar. 1968), 147-148.
2. SIGPLAN 4. The go to controversy. Proc. ACM Ann. Conf.,
1972, ACM, New York.
3. Wirth, N. The programming language Pascal. Acta Informatica
1 (1971), 35-63.
4. Wulf, W.A. Programming without the go to. Proc. 1971 IFIP
Congress, Ljubljana, Yugovlania, Aug. 1971.
S. Dijkstra, E.W. Notes on structured programming, EWD 249,
Technical U., Eindhoven, Netherlands, 1969.
6. Knuth, D.E., and Floyd, R.W. Notes on avoiding "goto"
statements. In Information Processing Letters 1. North-Holland
Pub. Co., Amsterdam, 1971, pp. 23-31.
7. Clint, M., and Hoare, C.A.R. Program proving: jumps and
functions. Acta Informatica I (1972), 214.

444

Equivalence Between
AND / OR Graphs and
Context-Free Grammars
Patrick A.V. Hall
The City University, London

Key Words and Phrases: artificial intelligence,
A N D / O R graphs, language theory, context-free
grammars

CR Categories: 3.60, 3.64, 5.23

Recent research in artificial intelligence has led to
AND/OR graphs as a model of problem decomposition
(Nilsson [3]; Simon and Lee [4]). However, AND/OR
graphs of a restricted type are equivalent to context-free
grammars. This can be set-up formally (the beginnings
of a formalism of AND/OR graphs is contained in [4]),
but the formalism is so obvious that a brief discussion
and example suffice.

To see that an arbitrary context-free grammar is
equivalent to an AND/OR graph, see Figure 1. A grammar
presented in the formalism of Hopcrof t and Ullman [2]
is displayed together with the corresponding AND/OR
graph. It is this graph which is often explicitly repre-
sented in computer storage when it is known as a
"syntax graph" (e.g. Gries [1]). The AND/OR graph is
alternating, in that AND nodes lead to oR nodes, and
vice versa, and is ordered, in that the edges leaving the
AND nodes have an ordering on them which is sig-
nificant for the language but not the grammar,

Fig. 1. A context-free grammar and the equivalent AND/OR
graph (b) has an AND node for each production and an OR node
for each variable, with edges from variable nodes to production
nodes indicating choice of substitution for the variable, and edges
from production nodes to variable giving an actual substitution.

(a)

G = ({S,A}, {a,b}, P,S)

P = {pt: S---~aAS, p~: S--~a, pa: A---~SbA, P4: A--*ba, p~: A---~SS}.

(b)

Conversely, any finite AND/OR graph in which the
AND/OR nodes alternate can be set equivalent to a con-
text-free grammar. This involves imposing an ordering
on the edges leaving the AND nodes: this ordering is

Author's address: Department of Mathematics, The City Uni-
versity, St. John Street, London, EC1, England.

Communications July 1973
of Volume 16
the ACM Number 7

